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Abstract

We consider the slow dynamics of a Rydberg electron in a hydrogen atom driven by a resonant microwave field. Two
crossovers in this system are discussed as the amplitude € of the external ficld increases. The first one creates isolated quantum
nontinear resonance (QNR) [see G.P. Berman and G.M. Zaslavsky, Phys. Lett. A 61 (1977) 295]. The second crossover
occurs when the QNRs overlap and a transition to chaos takes place. We analyze numerically the dependence én(e€) in the
regions of these two crossovers, where 8n is the characteristic number of unperturbed levels (or quasienergies) trapped in
the potential well of the QNR, and discuss the possibility of observing these crossover effects experimentally.

1. Introduction

When a quantum system with a non-equidistant
spectrum is driven by a resonant external field, quan-
tum nonlinear resonance (QNR) may occur, as intro-
duced in [ 1]. A QNR is characterized by two main pa-
rameters: the number of quasienergy levels dn which
are trapped into the potential well of the resonance
(the value of én also characterizes the number of lev-
els of the unperturbed Hamiltonian involved in the
dynamics), and the characteristic frequency of slow
oscillations {2y, QNR in such a system is the quan-
tum analog of nonlinear resonance (NR) which would
occur in the corresponding classical system [2,3].
NR plays an important role in classical dynamical
Hamiltonian systems, and describes, roughly speak-
ing, a stable “quasiparticle” (undestroyed KAM-torus
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[2]) in the classical phase space. QNR is a very gen-
eral phenomenon in quantum dynamical systems with
non-equidistant spectra [ 1,4-8]. Namely, an individ-
ual (isolated) QNR describes a stable quantum sys-
tem [ 1], and overlapping of the QNRs causes a tran-
sition to quantum chaos [4-8]. Experimental obser-
vation of QNR would be of significant interest. Some
problems connected with experimental observation of
QNR were discussed in [9]. Direct observation of
QNR requires to study the two main parameters of
QNR mentioned above: 6n and (2. One of the poten-
tially observable features of QNR is connected with
the crossover in the dependence of 2, (€), where €
is a dimensionless amplitude of an external resonant
field. Namely, when € is small enough, and a two-
level approximation can be used, then £2,, ~ g ~ €,
where (2 is the resonant Rabi frequency (see, for ex-
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ample, [10] ). When the amplitude of the resonant mi-
crowave field increases, and an isolated QNR occurs,
the dependence (2,n(€) changes, to become 2y, (€) ~
V€. This crossover effect in the dependence 2on(€)
could be experimentally measurable. However, an ex-
perimental measurement of the quasienergies is rather
complicated, and requires a separation of the charac-
teristic quasienergy of the QNR (2, from all others.
Instead, we consider numerically in this paper a char-
acteristic of the QNR which could be experimentally
observable in a hydrogen atom interacting with a mi-
crowave resonant field, and is connected with the de-
pendence dn(e€) of the number of quasienergy levels
on the amplitude of the external field. As we shall
show, the quantity n(€) in being “integral” is a robust
characteristic feature of the QNR, and may be observ-
able in experiments with Rydberg hydrogen atoms in
a resonant microwave field.

2. The main equations and the numerical results

Let a microwave electric field E(t) = e, Focos wt
be polarized along the z-axis, and r be an elec-
tron radius-vector in the hydrogen atom. Then, the
interaction of a microwave field with an electron
is described by the matrix elements (Hin)(t) =
—Egcoswt{n’,l',m|d |n,l,m), where d, = er; is
the z-component of the atomic dipole moment, the
integers n’,n are the principle quantum numbers,
I',)] are the orbital angular momentums quantum
numbers, and m is projection of the orbital angular
momentum on the z-axis. We shall consider only
those transitions which correspond to n’ ~ n > 1,
and to small orbital angular momenta: I',] < n’,n.
These conditions mean that the electron trajectories
are nearly one-dimensional (see, for example, the re-
view [11], and references therein). Let the complex
amplitude of the electron population be ¢, ;,.(2), sat-
isfying the Schrodinger equation with the interaction
Hamiltonian above. Introduce the complex amplitudes
Ma(t) = >, cnim(t), and consider the transitions
only with »’ = n & 1,n £ 2. Then, taking into ac-
count the conditions mentioned above, we derive the
following equations for the amplitudes 7,(7):

l@ﬂ =——"
dr 2n2 "

+u(n = 2) 0,0 — AP st — pn’naia},
(n

where A = J{(1), and p = $J5(2), and Ji(x) is the
first derivative of the Bessel function Jy(x). In (1)
€,v, 7 are the dimensionless amplitude of the exter-
nal field, microwave frequency, and time. Eq. (1) de-
scribes the quantum dynamics of an electron, provided
the amplitude of the external field is small enough,
€ < €2, for an isolated quantum nonlinear resonance
(QNR) occurs. An equation which describes the slow
quantum dynamics of QNR can be derived from (1)
in the following way (see also [1,4]). Expand the un-
perturbed energy spectrum E, = —1/2n% in the vicin-
ity of a resonant level ny (see below) up to the first
nonlinear term

+ iecosvr{A(n—1 ) u—1

En ~ Erl() + wno(n —ng) — %'}’(" - nﬁ)z’
Eo = —1/2n, y = 3/nj. (2)

In the quasiclassical region (# > 1), and under the
condition of small enough €, we may take into consid-
eration only transitions with n’ = n £ 1. Then, in the
resonant approximation |A] € @y, v (A = v — wy,)
we derive from (1) the equations for the slow ampli-
tudes,

Wpy = l/ng,

iAp =~ —Lym’ Ay,

+ %l’fn(z)A(e_iATAm_] - eiATAmT])’
(1) = An(7) exp { i [Eo + wnym] }
(m=n—ng). (3)

Eg. (3) can be written in the form of the Schrodinger
equation

P *d .

i = %YW — engAsin(f — AT)®,
D(0,7) =D +2m,7) =y An(T)e"™. (4)
Upon introducing the new variables 7' = —7, and & =

6 — AT — /2, we derive from (4) the following time-
independent Schrédinger equation for the QNR:
P

ia_f' = Hone®,
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FIQNR =Af+ %yiz — en(z,/\cosﬂ <i = ~i5%> .
(5)

In the classical limit the operator { reduces to the
classical action /, and the classical Hamiltonian of the
nonlinear resonance (NR) has the form

Hnr = AT + %ylz — sn%/\ cos . (6)

The quasiclassical quantization for the QNR takes
the form fozwl(ﬂ, e,)d® = 2mn, where g, is the
quasienergy spectrum of the QNR. The quasienergy
spectrum of an isolated QNR, and two interacting
QNRs are discussed in [6-8,12].

As one can see from (5), (6), the characteristic
frequency of the QNR (3, is of order 12y, ~ /ey An}
[1,2]. This means that the characteristic frequency of
the slow oscillations {2y, in the vicinity of the QNR
depends on the amplitude of the external microwave
field € according to the law h(€) ~ /€. Atthe same
time, when the amplitude of the external resonant field
is sufficiently small (e < €!!’), we may use in (1),
(2) the two-level approximation. In this case the slow
dynamics in the quasiclassical region is described by
the Rabi frequency [10]: 2z = /A% + €2A2n}. When
the resonance is rather narrow: [A| < €And, the Rabi
frequency is proportional to the first degree of the
amplitude of the external field €: 2x ~ €And. So, a
crossover exists in the dependence of the characteristic
frequency of the low oscillations 2, on € at some
value (], such that at € < €{’: Oy, ~ €; and at € >
ell': 4y ~ /e. This crossover in the dependence
2,n(€) should be experimentally observable.

It is simpler, however, to obscrve this crossover by
investigating the dependence én(e€), where &n is the
characteristic number of levels involved into the quan-
tum dynamics of the QNR. As follows from the above
considerations, for € < €}’ the characteristic number
of the trapped into the QNR levels is of order: én ~
2. On the other hand, when € > €'’ the dependence
én(e) has the form: dn(e) =~ (2/m)Al ~ /€, where
Al =4./en’A/y is the width of the classical NR in
action. So, the first crossover in the dependence dn(¢€)
takes place at the value € = €'}). The second crossover
in the dependence én(e) should be expected at some

value €{2) > €’ when different QNRs are overlap-
ping, and the transition to quantum chaos takes place.
When € > €{?), the number of trapped levels should
increase significantly with an increase of €.

We should note here that the dependence dn(e) ~
V€, which corresponds to the isolated QNR, is actu-
ally quasiclassical, and requires 8n > 1. At the same
time, as one can easily see, the Rydberg electron in a
hydrogen atom, with a principal quantum number g =
70, and influenced by a resonant microwave field, is
not the best quasiclassical system to observe an iso-
lated QNR. Consider the distance between the main
QNR centered at the level n(()l> defined by the equation
l/[n(()”]3 ~ v, and a second QNR, centered at the
level n(()z), and defined by the equation 2/[n((]2)]3 .
Then, the distance between these two resonances is
An = né,z) - n((]l) ~ (V2 = )n{". From this there
follows an estimate for the characteristic number of
levels trapped into the main QNR under the condition
that this resonance is isolated: én =~ %(\/5 - HndP.
If we choose n(()l) = 70, then én ~ 9 (see Fig. 1).
This means that the quasiclassical dependence én ~
v'e will not be very well represented in this system.
Nevertheless, the results of the numerical calculations
show (see below), that this dependence could still be
extracted.

The results of the numerical calculations of the de-
pendence of the difference in atomic occupation num-
bers on the external field amplitude én(e) =n_ (€) —
n_ (e) are shown in Figs. la,b. In this numerical ex-
periment we used the system of Egs. (1). The level
ny is the upper excited level, and the level n_ is
the lower excited level. All levels with |5,|> > 0.01
were included in the dependence 6n(€) represented in
Figs. 1a,b. The levels with |5,|?> < 0.01 were not in-
cluded (although they were also calculated). As one
can see from Figs. la,b, there exists a characteristic
dependence Sn(€) ~ /e that corresponds to the iso-
lated QNR for sufficiently low external field ampli-
tude. Also, the second crossover at € = €'2) is seen,
when different QNRs overlap, and a transition to quan-
tum chaos should occur. Fig. la corresponds to the
case wy,, =~ v, and Fig. 1b corresponds to the case
wy, ~ 3v. In both cases ng = 70. The dependence
dn(e€) presented in Figs. la,b is the dependence, we
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Fig. I. Dependences n(e€) and ny (€) which characterize (breaks
in slope) the quantum nonlinear resonance with 8n(€) ~ /€, and
two crossovers which take place near eé,!) ~ 0.05 and eéf) ~ 0.08;
in (a) and (b), respectively, for ng = 70; (a): wpy & v; (b):
@y ~ 3v. We suggest in the text that these breaks in the slope of
on(e) and ny(€) should be measurable indications of quantum
nonlinear resonance and overlap and, thus, creation of QNR at
s,ﬁ,l) and overlap, leading to transition to quantum chaos at ei.;"),
in the dynamics of Rydberg atoms driven by a resonant external
field of amplitude €.

suggest, that should be investigated experimentally in
order to observe QNR using the Rydberg states of a
hydrogen atom interacting with a resonant microwave
field.
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